

DNS-BASED THREAT HUNTING:

learn, share and improve. repeat.

João Collier de Mendonça Zurich, September 2016.

- Brazilian living in Germany for a long time •
- Since 2010 at Deutsche Telekom CERT / CDC
- Based in Bonn, Germany •
- Network Security & Forensics, Incident Response, Collaboration
- I'd rather be sailing :-)

\$ whoami

- Problem statement
- DNS and its features
- Patterns: learn, share and improve. repeat.

AGENDA

PROBLEM STATEMENT

Use DNS features^{*} to spot malicious activities

* features in the sense of "characteristics"

THE "WHAT"

- Networks are ubiquitous, • so is DNS
- Malware uses DNS widely •
- Organisations frequently do not • monitor it properly

Your blind spot is the • attacker's sweet spot

THE "WHY"

Source: Cisco Security Research

Source: Cisco 2016 Annual Security Report

MIND OUR SETTINGS

- Incident Response
- Environment for which there is no traffic baseline
- How can I leverage DNS data for detection?

DNS AND ITS FEATURES

DNS Protocol		IP/Network		Domain Registration	
TTL values	Response codes	IP addresses (eg. diversity)	ASNs (eg. diversity)	Contacts: registrar, registrant	Creation date
FQDN length	FQDN lexical features	Parked domains (eg. A record non- routable address)	CNAME, NS, SOA, MX associations	Expiration date	Last update
2nd-level domain length	2nd-level domain lexical features			Country / Geoloc	
Timing info (eg. queries / sec)					

DNS AND ITS METADATA

PATTERNS a solid starting point

PATTERN I FQDN Length

- Look for very long FQDNs
- Needed to maximise throughput of a DNS tunnel
- As easy as len(str) on a widely available field
- skype, spotify, antivirus, etc)

FQDN LENGTH

• Exclude legitimate use: services using disposable hostnames (CDNs,

- Field is widely available (and rarely used e.g. on SIEM)
- Inspect all FQDN on requests

FQDN LENGTH

tshark -nn -r \$PCAP -T fields -E header=n -E occurrence=a -E quote=n -E separator=',' -e dns.qry.name -Y 'ip and dns and (dns.flags.response==0)'

PATTERN 2 Rate of TXT Records

- Look for endpoints with higher rate of queries for TXT records
- Needed to maximise throughput of tunnel
- Detected by aggregation of TXT usage by endpoints
- verification

Beware of legitimate usage: Mail servers (SPF), domain ownership

- Gather DNS replies with TXT records tshark -nn -r \$PCAP -Y 'ip and dns and (dns.flags.response==1) and dns.qry.type==0x10'
- Create a aggregated (queries and responses) list of top talkers using TXT records uniq -c | sort -rn

tshark -nn -r \$PCAP -Y 'ip and dns and dns.qry.type==0x10' -T fields -E header=n -E occurrence=a -E quote=d -E separator=',' -e ip.dst | sort |

PATTERN 3 Rate of NXDOMAIN

RATE OF NXDOMAIN

- rate of NXDOMAIN
- Simple rate comparison of NXDOMAIN between endpoints
- Exclude legitimate usage, eg. queries for domain.tld.dbl.spamhaus.org

"DGA-infected" endpoints will generate DNS response with higher

RATE OF NXDOMAIN

- Inspect all responses with DNS NXDOMAIN tshark -nn -r \$PCAP -Y 'ip and dns and (dns.flags.response==1) and dns.flags.rcode!=0'
- Create a list of unique-domain NXDOMAIN top talkers tshark -nn -r \$PCAP -Y 'dns and (dns.flags.response==1) and separator=',' -e ip.dst | sort | uniq -c | sort -rn

dns.flags.rcode!=0' -T fields -E header=n -E occurrence=a -E quote=d -E

SHARE A LEARNING while using FQDN Length

FQDN LENGTH: LEARNING

kinkasayolmhvmw2ribnf2u24lrjuavaqkzcvua27amab4wyukrifiqspiij.eqwinlrjqafq abnaqqq2xcabveckykybacak5lqkecdamj4cvavsydvfuqbs. 7by.counterbalancegenusonychomys.com.

> oiltycoonparotid.in lymantriacypresdoctrine.biz counterbalancegenusonychomys.com

- Don't chase your tail
 (like I did)
- secretmedia.com:
 ad-blocker bypassing
 service

Ş d kin pii syd [sn kin fro fro fro fro fro

QDN LENGTH: LEARNING

ig							
kasayolmhvmw2ribnf2u24	4lrjua	avaqkz	CV	ua27amab4wyukrif			
j.eqwinlrjqafqabnaqqq2	2xcabv	veckyk	yb	acak5lqkecdamj4c			
vfuqbs.7by.counterbalancegenusonychomys.com.							
Truncated, retrying in	TCP ו	mode.					
ip]							
ANSWER SECTION:							
kascounterbalancege	enusor	ychom	ys	.com. 1000 INCNA			
nt11.secretmedia.com.							
nt11.secretmedia.com.	3600	IN	Α	185.42.119.171			
nt11.secretmedia.com.	3600	IN	Α	185.42.119.107			
nt11.secretmedia.com.	3600	IN	Α	185.42.119.41			
nt11.secretmedia.com.	3600	IN	Α	185.42.119.139			

THANKYOU FORYOURTIME and for ideas during the hop-on, hop-off

João Collier de Mendonça Zurich, September 2016.

DNS-BASED THREAT HUNTING:

learn, share and improve. repeat.

João Collier de Mendonça Zurich, September 2016.

HOP-ON HOP-OFF

- Initial Idea was to provide patterns for detection
- Feedback to the initial ideas very was nice, thank you!
- Hopefully, you will add this patterns to your toolbox!

HOP-ONHOP-OFF

- Further patterns collected during hop-on hop-off
 - Endpoints querying for CNAME and NS record types
 - Inspect Entropy of FQDNs together with length
 - the calculation over the entire FQDN

• For entropy calculation, quick'n'dirtyTM, just drop the dots (.) and

THANKYOU FORYOURTIME and for ideas during the hop-on, hop-off

João Collier de Mendonça Zurich, September 2016.

