
How to break, then fix,
differential privacy on finite computers

Damien Desfontaines
damien@desfontain.es

@TedTed@hachyderm.io 

Or: what do you do when x + y = privacy vulnerability?



Background: the problem

🙂 😇 😈



Successful 
reconstruction 
of 46% of the 

individual 
records 😰

Statistics 
published by the 
Census Bureau

Individual 
records from 

the 2010
U.S. Census

Background: the problem

😇🙂 😈



Background: the solution, in theory

Differential privacy: the impact of a single person must be undetectable.

99 100 101 102 103 104 105 106

Pr
ob

ab
ili

ty

989796

Randomized output

Counting the number of records: 
the true answer is either 100 or 101

😈
🔍



Zooming in: floating-point numbersZooming in



What happens to our continuous line?



Why does this happen?

def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

This does not generate all possible 
floating-point values between 0 and 1!

This creates “holes” — impossible 
values — in the noise distribution…

And the “holes” propagate to the 
sum.



def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

Let’s fix the noise generation!

Attempt 1: fixing the noise generation 
to get a distribution without “holes”.

Attempt 2: combining multiple noise 
samples together to make it intractable 

to reverse-engineer the randomness.😈
But… what about the 
sum at the very end?



Fun fact about floating-point addition…



Fun fact about floating-point addition…

😈
What if we add noise to 1.25?

It has precision 2-52.



If the noise is small…

Fun fact about floating-point addition…

😈



If the noise is small…

Fun fact about floating-point addition…

If the noise is small…
the sum’s precision is at least 2-53.😈



Fun fact about floating-point addition…

If the noise is large…

😈



Fun fact about floating-point addition…

If the noise is large…
the sum is a multiple of 2-53!😈



Takeaway: this is bad news

😈 When adding noise to a number of precision 2k,
we always get a multiple of 2k-1.

true value: 1.25

true value: 0



Very bad

Not too 
scary*

How bad is this?

Only with well-chosen 
adversarial inputs

With realistic inputs, 
in rare scenarios

With realistic inputs, 
likely met in practice

When can a 
vulnerability occur?

Small mismatch in 
privacy guarantees

Large mismatch in 
privacy guarantees

Learning individual 
data with certainty

What can an attacker learn 
with a vulnerability?



Distinguishing event,
on realistic inputs and 
probable outputs 😰

Only with well-chosen 
adversarial inputs

With realistic inputs, 
in rare scenarios

With realistic inputs, 
likely met in practice

When can a 
vulnerability occur?

Small mismatch in 
privacy guarantees

Large mismatch in 
privacy guarantees

Learning individual 
data with certainty

What can an attacker learn 
with a vulnerability?

How bad is this?



How do we fix it?

def add_noise(true_value, epsilon):  

  sign = random.choice([-1, 1])

  u = random.uniform(0, 1)

  noise = sign * math.log(u) / epsilon

  return true_value + noise

We need to fix the entire routine,
not just the noise generation!



105

Four core ideas

95

0.5

0

1

100

Idea 1: generate the distribution 
centered on the true value

Idea 2: use the inverse of the 
cumulative distribution function



Idea 3: sample an interval…

105

Four core ideas

95 100

0.5

0

1



105

Four core ideas

95 100
0

1

0.5

Idea 3: sample an interval…
and iteratively refine it



103

Four core ideas

97 100
0

1

0.5

Idea 3: sample an interval…
and iteratively refine it



103

Four core ideas

97 100
0

1

0.5

Idea 3: sample an interval…
and iteratively refine it



Four core ideas

64-bit floating-point values

Arbitrary precision 
floating-point values

Arbitrary precision floating-point values

Idea 4: use arbitrary precision 
values with interval arithmetic 



Four core ideas
Arbitrary precision 

decimal values

64-bit floating-point values



- Simple security proof: “just like” infinite-precision sampling + rounding! 💡

- Fully generic: works with many distributions, adapts to other methods! ✨

- Fast: converges quickly, especially if we generate many bits at a time 🏎

Why this is neat



Takeaways

- Differential privacy can have vulnerabilities! 😱

- To fix them, ad hoc approaches are not robust enough 🚫

- But principled approaches can be simple (and fast) enough! 🎉

- What do you need to do? Nothing — just use a library with a proven fix 😇



- Authors of diffprivlib, SmartNoise Core & OpenDP for quickly 
acknowledging the vulnerabilities ❤

- Authors of OpenDP for fixing the vulnerabilities 💙

- Authors of Google’s DP library, for implementing another approach that 
comes with a privacy proof and isn’t vulnerable to these attacks 💛

- Everyone who ships open-source code allowing this kind of research 💚 

Shout-outs



Stay in touch!
 

Damien Desfontaines
damien@desfontain.es

@TedTed@hachyderm.io

Learn more!
 

About us: tmlt.io
About our code: tmlt.dev

Thank you 💖


