b
~ -
—
=

How to break, then fix,
differential privacy on finite computers

Or: what do you do when x + y = privacy vulnerability?

Damien Desfontaines
damien@desfontain.es

@TedTed@hachyderm.io
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Background: the solution, in theory

Differential privacy: the impact of a single person must be undetectable.

A Counting the number of records:
the true answer is either 100 or 101
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Zooming in: floating-point numbers
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What happens to our continuous line?
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Why does this happen?

This does not generate all possible
def add noise(true_value, epsilon): floating-point values between 0 and 1!

sign = random.choice([-1, 1])
u = random.uniform(@, 1)

This creates “holes” — impossible
noise = sign * math.log(u) / epsilon values — in the noise distribution...

return true_value + noise

And the “holes” propagate to the

sum.




Let’s fix the noise generation!

Attempt 1: fixing the noise generation
to get a distribution without “holes”.

def add_noise(true value, epsilon):
sign = random.choice([-1, 1])

u = random.uniform(@, 1)
Attempt 2: combining multiple noise

noise = sign * math.log(u) / epsilon samples together to make it intractable

to reverse-engineer the randomness.

return true value + noise '

But... what about the
sum at the very end?




Fun fact about floating-point addition...
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Fun fact about floating-point addition...

-2 -1 -05 -025.. 0 ..025 05
true_value= 1.25
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precision: 2 precision: 2 precision: 2~ and below precision: 2 precision: 2

What if we add noise to 1.25?
It has precision 252,




Fun fact about floating-point addition...

noise is here
r A ~
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true_value= 1.25
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If the noise is small...




Fun fact about floating-point addition...

noise is here ...50 true_value + noise is there.
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precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

If the noise is small...
the sum'’s precision is at least 233,




Fun fact about floating-point addition...

noise is either here... ...or there

—
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If the noise is large...




Fun fact about floating-point addition...

noise is either here... ...or there

—
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P -52 P -53 . s -54 P -53 . e 52
precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

If the noise is large...
the sum is a multiple of 2->3!




Takeaway: this is bad news

When adding noise to a number of precision 2,
we always get a multiple of 2+,

true value: 1.25
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How bad is this?

What can an attacker learn
with a vulnerability?

Very bad

Learning individual |
data with certainty

Large mismatch in |
privacy guarantees

Small mismatchin |
privacy guarantees Not too

scary®
y When can a

vulnerability occur?

1 1
Only with well-chosen With realistic inputs, With realistic inputs,
adversarial inputs in rare scenarios likely met in practice




How bad is this?

What can an attacker learn
with a vulnerability?
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How do we fix it?

def add noise(true value, epsilon):
sign = random.choice([-1, 1])
u = random.uniform(@, 1)
noise = sign * math.log(u) / epsilon

return true_value + noise

We need to fix the entire routine,

not just the noise generation!




Four core ideas

A
! Idea 1: generate the distribution
centered on the true value
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cumulative distribution function
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Four core ideas

A
Idea 3: sample an interval...
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Four core ideas

A
Idea 3: sample an interval...
and iteratively refine it
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Four core ideas
Idea 4: use arbitrary precision

A
values with interval arithmetic

Arbitrary precision
floating-point values

}/.\I ) r\: P 64-bit floating-point values

]
|
@ Arbitrary precision floating-point values




Four core ideas

A Arbitrary precision
decimal values

: P 64-bit floating-point values




Why this is neat

- Simple security proof: “just like” infinite-precision sampling + rounding! _
- Fully generic: works with many distributions, adapts to other methods!

- Fast: converges quickly, especially if we generate many bits at a time _,



Takeaways

- Differential privacy can have vulnerabilities! @
- To fix them, ad hoc approaches are not robust enough ©
- But principled approaches can be simple (and fast) enough! &

- What do you need to do? Nothing — just use a library with a proven fix &
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Thank you %

Stay in touch!

Damien Desfontaines

damien@desfontain.es
@TedTed@hachyderm.io

Learn more!

About us: tmlt.io
About our code: tmlt.dev



