b
~ -
—
=

How to break, then fix,
differential privacy on finite computers

Or: what do you do when x + y = privacy vulnerability?

Damien Desfontaines
damien@desfontain.es

@TedTed@hachyderm.io

Background: the problem

B — il — &

Background: the problem

Individual
records from
the 2010
U.S. Census

Statistics
published by the
Census Bureau

Successful
reconstruction
of 46% of the

individual
records &

Background: the solution, in theory

Differential privacy: the impact of a single person must be undetectable.

A Counting the number of records:
the true answer is either 100 or 101

Probability

2
N\

I
I
I
I

y

96 97 98 99 100 101 102 103 104 105 106

Randomized output

Zooming in: floating-point numbers

0 0.

5 1

35

|Ill|lllllll
|III|IIIIIII

||Illlll| I I
Illllllll L

Probability

Counting the number of records:
the true answer is either 100 or 101

1
|
I
¥

96

97

98

99 100 101 102

Randomized output

What happens to our continuous line?

?

t gth numb of records:
either 100 r 101

Illllllllllll
IIIIlHIIIIII

Probability

Why does this happen?

This does not generate all possible
def add noise(true_value, epsilon): floating-point values between 0 and 1!

sign = random.choice([-1, 1])
u = random.uniform(@, 1)

This creates “holes” — impossible
noise = sign * math.log(u) / epsilon values — in the noise distribution...

return true_value + noise

And the “holes” propagate to the

sum.

Let’s fix the noise generation!

Attempt 1: fixing the noise generation
to get a distribution without “holes”.

def add_noise(true value, epsilon):
sign = random.choice([-1, 1])

u = random.uniform(@, 1)
Attempt 2: combining multiple noise

noise = sign * math.log(u) / epsilon samples together to make it intractable

to reverse-engineer the randomness.

return true value + noise '

But... what about the
sum at the very end?

Fun fact about floating-point addition...

-2 -1 -05 -025.. 0 ..025 05 1
Hll]llllll 111111l | | T T | I | | |
%F_H_H_‘_PAM-HWMHHHHHIHHWHHHW L | ——

v Y v Y v

. . -52 . . -53 - -54 . . 53 . . -52
precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

Fun fact about floating-point addition...

-2 -1 -05 -025.. 0 ..025 05
true_value= 1.25
v 7 \ v - \ 2V o~ \ Y - “ v
. . -52 . . -53 - -54 . . 53 .. -52
precision: 2 precision: 2 precision: 2~ and below precision: 2 precision: 2

What if we add noise to 1.25?
It has precision 252,

Fun fact about floating-point addition...

noise is here
r A ~
-2 -1 -05 -025.. 0 ..025 05
true_value= 1.25
“ v v \ e - \ Ve o \ v -y AN v
.. -52 .. -53 .. 54 .. -53 .. -52
precision: 2 precision: 2 precision: 2~ and below precision: 2 precision: 2

If the noise is small...

Fun fact about floating-point addition...

noise is here ...50 true_value + noise is there.
-2 -1 -05 -025.. 0 .. 025 05 1 2

true_value= 1.25

\ 7\ 7\ 7\ RN)
' Y N Y v

.. -52 .. -53 . . 54 .. -53 .. 52
precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

If the noise is small...
the sum'’s precision is at least 233,

Fun fact about floating-point addition...

noise is either here... ...or there

—

-2 -1 -05 -025.. 0 ..025 05 1 2

true_value= 1.25

\ 7\ 7\ 7\ 7 o
v Y v Y v

P -52 P -53 . s -54 P -53 . e 52
precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

If the noise is large...

Fun fact about floating-point addition...

noise is either here... ...or there

—

-2 -1 -05 -025.. 0 ..025 05 1 2

true_value= 1.25

\ 7\ 7\ 7\ 7 o
v Y v Y v

P -52 P -53 . s -54 P -53 . e 52
precision: 2 precision: 2 precision: 2" and below precision: 2 precision: 2

If the noise is large...
the sum is a multiple of 2->3!

Takeaway: this is bad news

When adding noise to a number of precision 2,
we always get a multiple of 2+,

true value: 1.25

v v
i —>
Pt

true value: O

How bad is this?

What can an attacker learn
with a vulnerability?

Very bad

Learning individual |
data with certainty

Large mismatch in |
privacy guarantees

Small mismatchin |
privacy guarantees Not too

scary®
y When can a

vulnerability occur?

1 1
Only with well-chosen With realistic inputs, With realistic inputs,
adversarial inputs in rare scenarios likely met in practice

How bad is this?

What can an attacker learn
with a vulnerability?

Dol

Distinguishing event,
on realistic inputs and
probable outputs %

Learning individual
data with certainty

Large mismatch in
privacy guarantees

Small mismatch in
privacy guarantees

When can a
vulnerability occur?

1 1
Only with well-chosen With realistic inputs, With realistic inputs,
adversarial inputs in rare scenarios likely met in practice

How do we fix it?

def add noise(true value, epsilon):
sign = random.choice([-1, 1])
u = random.uniform(@, 1)
noise = sign * math.log(u) / epsilon

return true_value + noise

We need to fix the entire routine,

not just the noise generation!

Four core ideas

A
! Idea 1: generate the distribution
centered on the true value

05
‘ _____________________________
Idea 2: use the inverse of the
cumulative distribution function
0 i >
95 e 100 105

Four core ideas

A
Idea 3: sample an interval...

e 05 |- !

1

95 100 105

Four core ideas

A
Idea 3: sample an interval...
and iteratively refine it

05 - e e e !

1

95 100 105

Four core ideas

A
Idea 3: sample an interval...
and iteratively refine it

1

05

97 100 103

Four core ideas

A
Idea 3: sample an interval...
and iteratively refine it

1

05

97 100 103

Four core ideas
Idea 4: use arbitrary precision

A
values with interval arithmetic

Arbitrary precision
floating-point values

}/.\I) r\: P 64-bit floating-point values

]
|
@ Arbitrary precision floating-point values

Four core ideas

A Arbitrary precision
decimal values

: P 64-bit floating-point values

Why this is neat

- Simple security proof: “just like” infinite-precision sampling + rounding! _
- Fully generic: works with many distributions, adapts to other methods!

- Fast: converges quickly, especially if we generate many bits at a time _,

Takeaways

- Differential privacy can have vulnerabilities! @
- To fix them, ad hoc approaches are not robust enough ©
- But principled approaches can be simple (and fast) enough! &

- What do you need to do? Nothing — just use a library with a proven fix &

Shout-outs

- Authors of diffprivlib, SmartNoise Core & OpenDP for quickly
acknowledging the vulnerabilities 4

- Authors of OpenDP for fixing the vulnerabilities

- Authors of Google's DP library, for implementing another approach that
comes with a privacy proof and isn't vulnerable to these attacks @)

- Everyone who ships open-source code allowing this kind of research

Thank you %

Stay in touch!

Damien Desfontaines

damien@desfontain.es
@TedTed@hachyderm.io

Learn more!

About us: tmlt.io
About our code: tmlt.dev

