
Snyk.io

 2023

Paralyzing the Node one
RegEx at a time

Snyk.io

$ whoami && who is Snyk-labs?
Security Research Team at Snyk

🛹 Skateboarding / 🏂 Snowboarding

 Cats

🍻 Craft beer

󰏅 UK ➡ 󰎤 Zurich

● Snyk (pronounced sneak) is a developer security platform for securing
code, dependencies, containers, and infrastructure as code.

● Snyk Security Lab aims to position Snyk as a leader in open source security
through innovative research

● Contribute security expertise to strategic company directions
● Snyk product improvements

Snyk.io

/(Re)DoS/g

Snyk.io

Snyk.io

Snyk.io

Definition: A Regular Expression is a sequence of characters that forms a search pattern.

$ What are Regular Expressions?

Purpose:
● Search: Find specific content within

text
● Match: Check if a string follows a

particular pattern
● Replace: Change certain parts of a

string
● Split: Break a string into smaller

pieces

/https?:\/\/[^\s]+/

/^\+41[-\s]\d{9}$/

/^\w+@\w+\.\w+$/
Email address

CH number

URL

Snyk.io

$ What is a ReDos?

Input

email=bsides@snyk.io ReGex
Engine

Response

Email OK

/("[^"]*"|[^@])*@[^@]*/

Snyk.io

$ What is a ReDos?

Single malicious Input

email=””””””””””””””””””””” ReGex
Engine

/("[^"]*"|[^@])*@[^@]*/

Input

email=userA@bsideszh.com

Input

email=userA@bsideszh.com

Snyk.io

Pattern: /("[^"]*"|[^@])*@[^@]*/

● Input 1: patch@snyk.io
○ We reach State A, and go to State B

after the @ symbol

● Input 2: pa”tch@snyk.io
○ State A for first to characters P + A
○ When we reach third character “, do we:

■ Match under “any character except
@”?

■ Enter State C to allow any
character within a pair of quotes?

mailto:patch@snyk.io
mailto:tch@snyk.io

Snyk.io

$ Backtracking
Definition: Backtracking is a trial-and-error-based problem-solving algorithm.

It's like trying to find your way through a maze. You go
down one path, and if you hit a dead-end, you go back and
try a different one.

● When you reach a junction, you make a choice.

● Not all choices are valid; must meet certain criteria.

● We backtrack when we can't reach the goal via the

current path.

Snyk.io

$ Backtracking

Snyk.io

Snyk.io

Snyk.io

$ How does this cause a DoS?
● Shouldn’t this only affect the single attacker request?

Snyk.io

$ Platform threading
Language / Framework Request Handling Model Details

Java (Spring) Thread-per-request Uses a thread pool to manage incoming HTTP requests. Each request is handled by
a separate thread from the pool.

PHP (mod_php) Process-per-request In an Apache setup with mod_php, each worker process handles a single PHP
request.

PHP (PHP-FPM) Process-per-request Each PHP-FPM worker process is responsible for handling a single request.
PHP-FPM manages a pool of these worker processes.

Python (Django, Flask) Process- or Thread-per-request Django and Flask can be configured to use different types of server setups,
such as WSGI servers like Gunicorn or uWSGI, which can use either worker
processes or threads to handle requests.

Node.js Event Loop Node.js uses a single-threaded event loop to handle all requests.
Asynchronous, non-blocking I/O allows it to efficiently manage multiple
concurrent requests.

Ruby (Rails) Process- or Thread-per-request Depending on the server (e.g., Puma, Unicorn), Rails can use either a
process-per-request or thread-per-request model. Puma, for example, supports both.

Go Goroutine-per-request Each request is handled by a separate Goroutine, which is a lightweight thread
managed by the Go runtime.

Snyk.io

Snyk.io

Scanning NPM for ReDoS
Collect popular

packages

Clone
repos

Iterate
over files

Extract regular
expressions

Test for
ReDosReDoS leads

Validate
exploitability

Regex for regex: /\/(\\\/|[^*\/\n\r])(*[^/]|[^\/\n\r])*\/[gimyus]{0,6}(?=\s*(;|,|\)|\]|\}|$))/g

Recheck NPM package

Snyk.io

$ results

From the initial 150 top NPM packages 1432 vulnerable regular
expressions

Does NOT mean all are exploitable… may not be reachable and
how its used makes a difference (test, match, exec, replace, etc)

Take sample of results and validate the modules API contains
path from user input to vulnerable regex

Snyk.io

$ results
Package Weekly downloads

semver 283152638

unfixed 13034595

ua-parser-js 10968947

unfixed 7864313

marked 7619555

css-tools 5775025

unfixed 741700

unfixed 724629

unfixed 451882

+ Many more

Exploitable ReDos conditions
across many package types for:

● Parsing headers of incoming
requests

● Parsing file uploads
● Markdown parsers
● CSS parsers
● Other generic utility parsers

Snyk.io

$ cat mitigations.txt

Regular expressions can be tricky…

● Avoid using regular expressions where possible
● Use pre-vetted regular expressions
● Scan regular expressions for ReDos with Recheck + our script
● Avoid specific patterns

1. (a+)+ : Nesting quantifiers
2. (a|a)+ : Quantified overlapping disjunctions
3. \d+\d+ : Quantified Overlapping Adjacencies

https://github.com/mowzk/redos-scan

Snyk.io

$ thanks for listening
1. Why are ReDos issues often overlooked? Is it complexity, awareness,

or something else?

2. Should you care about non exploitable regexes, and how to deal with
overwhelming number of issues?

3. Have you ever checked your code (or dependencies) for problematic
regular expressions?

4. What responsibilities do open-source maintainers have to prevent
ReDoS vulnerabilities? Should they be held to a higher standard than
proprietary software?

Snyk.io

$ exit

